Numerical Solution of a Coefficient Identification Problem in the Poisson equation Submission

نویسنده

  • Thomas Haener
چکیده

In this Bachelor thesis, the problem of determining the coefficient q ∈ Q := {q ∈ L∞(Ω) : 0 < q ≤ q(x) ≤ q a.e. in Ω} such that it satisfies the Poisson equation −∇ · (q∇u) = f in Ω u = 0 on ∂Ω for given inexact data uδ (instead of exact data u) with ‖u−u‖H1(Ω) ≤ δ is analyzed and solved numerically. It is implemented in c++ using the Distributed and Unified Numerics Environment (DUNE). The origin of the ill-posed nature of this inverse problem is illustrated in 1D. In order to remedy this ill-posedness, Tikhonov regularization is applied together with Morozov’s Discrepancy Principle and, instead of trying to minimize the non-convex least-squares Tikhonov functional, the new convex energy functional found in [1] is used. Experiments performed with this implementation agree with the theory found in [5]: For smooth coefficients a convergence rate of O( √ δ) in the L2(Ω)-Norm is observed and for non-smooth coefficients the reconstruction and the convergence rates are found to be much worse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem. 

متن کامل

Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function

The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

An inverse problem of identifying the coefficient of semilinear parabolic equation

    In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...

متن کامل

Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm

This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014